Mapping the Nonreciprocal Micromechanics of Individual Cells and the Surrounding Matrix Within Living Tissues.
نویسندگان
چکیده
The biomechanical properties of the extracellular matrix (ECM) play an important role in cell migration, gene expression, and differentiation. Biomechanics measurements of ECM are usually performed on cryotomed tissue sections. However, studies on cell/matrix interplay are impossible to perform due to disruptions in cell viability and tissue architecture from freeze-thaw cycling. We developed a technique to map the stiffness of living cells and surrounding matrix by atomic force microscopy and use fluorescence microscopy to relate those properties to changes in matrix and cell structure in embryonic and adult tissues in situ. Stiffness mapping revealed significant differences between vibratomed (living) and cryotomed tissues. Isolated cells are softer than those in native matrix, suggesting that cell mechanics are profoundly influenced by their three-dimensional environment and processing state. Viable tissues treated by hyaluronidase and cytochalasin D displayed targeted disruption of matrix and cytoskeletal networks, respectively. While matrix stiffness affected cellular stiffness, changes in cell mechanics did not reciprocally influence matrix stiffness.
منابع مشابه
اهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملVibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues
The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...
متن کاملThermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis
A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملPropagation of Matrix Cracking and Induced Delaminatin in Cross-Ply Composite Beams Subjected to Bending Loads
Due to the mismatch of mechanical properties in composite laminates, propagation of delami-nation is considered as a severe damage mechanism in beams with various lay-up configurations. Delamination can be generated due to matrix cracking propagation or it can also be initiated due to the manufacturing process before using composite beams. Using a micromechanics model, this study is aimed to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016